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Abstracts 
In this work we study holography using computer simulations. We present a mathematical description of how 

one can produce and read a thin hologram using different kinds of waves, such as scalar (acoustic waves), vector 

(electromagnetic field, Maxwell-Proca fields, etc.). We construct a computer program for the scalar wave in the two-

dimensional infra-space. For reading of the hologram, we use the Green's function formalism. With the help of 

computer simulations, we investigate the aberrations of image created by this procedure. We found a comma-like 

aberration in most of the cases studied.  
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Introduction  
The theory of holography was first developed 

by Hungarian scientist Dennis Gabor around 1947-48 

while working to improve the resolution of an electron 

microscope [1]. He coined the words hologram and 

holography from the Greek words holos (whole, 

entire) and gramma (anything written or drawn). A 

hologram is defined as the whole [or entire] message: 

the total information. However, holography refers to 

the information storage process. According to the 

principle of holography, a detailed three dimensional 

image of an object can be recorded in a two 

dimensional photographic film and the image can be 

reproduced in a three dimensional space.  

 In the first holographic experiment Gabor 

used incandescent light and the results were good 

enough to prove his theory. The quality of the 

hologram was poor due to the random phase 

relationships (the noise) produced by the incandescent 

light. The conventional optical holography is a unique 

interference pattern of two light beams: A reference 

beam and an object beam (also known as the 

diffraction beam); see Fig. 1 [2]. A laser beam is split 

by a beam splitter into two parts. The first one (the 

reference beam) of the divided coherent beam is 

focused directly on the film and the second one 

(illumination beam) which flashed onto the object of 

interest and the modified light waves (the object 

beam), after reflection from the object, are then 

directed on the film where they interact with the 

reference beam. The interaction of the coherent 

information in the reference beam and the object beam 

creates the interference pattern and is recorded 

(encoded) in the film emulsion. The complex 

patterned information stored in the film is called 

'hologram'. When the developed film is again 

illuminated by a coherent light beam, the encoded 

information is projected into local space and an image 

of the original object is reconstructed. 
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FIG. 1: Interference pattern of object and reference beam stored as the hologram [2]. 

  

 The hologram can be produced by any wave 

kind of wave action [3]. The conventional laser 

holography [4], acoustical holography [5] and electron 

holography [6] came up about fifty years after the first 

articulated hologram theory. Due to advancement in 

the computer technology the computational 

holography [7], a computer synthesized real-time 

interactive or virtual reality display of holograms, is a 

growing area of interest.  

 In this work we investigate the aberrations 

caused by the holographic procedure. We also studied 

the effect of reading beam hitting the screen not in the 

same direction as the reference wave, but in a slightly 

different one, and by using slightly different 

wavelengths for the reading, etc. As it is known in 

optics [3], the image of a point is rarely a point, but a 

fuzzy object. We investigate the width of this image 

and its dependence on the size of the holographic 

screen, the distance between the screen and the object, 

the distance of the object from the symmetry axis of 

the screen, the nature of the mapping and reading 

wave. By 'waves of different nature', we mean scalar, 

spinor, vector and tensor waves etc...  

 In the section-II we describe the theory of 

creation and reading of a hologram using various types 

of waves in the usual space, infra-space and 

hyperspace. In the section-III we use computer 

simulations and study the image created by the  

 

holographic mapping of a single stationary point with 

scalar wave in 2d-space, and then reading the 

hologram. In this section we investigate the 

aberrations caused by the holographic procedure. In 

the section-IV we present the discussion and 

conclusions. 

 

Holographic mapping and reading 
In this section we describe the creation of 

holograms when the object is in the d-dimensional 

space (subsection IIB) and the hologram is created in 

the 'd-1'-dimensional space. In the present work we 

study the object in 2-dimensional space and the 

hologram is created on a 1-dimensional line. Next, we 

describe the reconstruction of the holographic image 

in the d-dimensional space (subsection IIC). As said 

above, the holograms can be formed in the presence of 

any wave action [3], first we use scalar fields and we 

generalize our procedure for several other fields like, 

electromagnetic, acoustic, Maxwell-Proca, tensor 

(gravitational), and spinor fields. We also describe 

how one can generalize these calculations to a space 

of different dimensionality. 

 To generalize the results of our previous 

work [8], here we use a massive scalar field and we 

prove that for this the Green's functions found in the 

classical text books of electricity and magnetism, such 

as [9] is adequate. Scalar waves can be produced by 

using scalar particles, or pseudo scalars, as in the case 

of our calculation space reflection is not used. Even if 
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we make use of electromagnetic waves, that are 

vectors, they can be regarded as scalars in the so-called 

paraxial approximation, meaning that the size of the 

screen is much smaller than the object-screen distance 

[10]. But in order to create and read holograms, one 

must investigate how different kind of waves are 

reflected and how do they affect photosensitive 

materials. We restrict our discussion to thin and 

reflection holograms, although the generalization to 

transmission holograms is straightforward. 

 

A. The Physics of Different Kinds of Waves 

For scalar waves, there is obviously no issue of 

polarity. For vectorial waves with several 

components  𝐴𝑖, the reflection process can be 

modelled as 

 

𝐴𝑖′ = −𝑅𝑇𝑖𝑗𝐴𝑗 ,      (1) 

 

 where the prime referring to the components 

after reflection, R is the reflectivity, and 𝑇𝑖𝑗 is the 

reflection tensor. The negative sign is due to the phase 

the phase shift of 𝜋 due to reflection. For tensor waves, 

this is generalized as 

 

𝐴𝑖𝑗′ = −𝑅𝑇𝑖𝑘𝑇𝑗𝑙𝐴𝑘𝑙 ,                                        (2) 

 

 Next we describe how this transformation 

tensor is determined in the case when we use vectorial 

waves. The wave vectors of the incident and reflected 

waves are 𝑘𝑖
⃗⃗  ⃗ and 𝑘𝑟𝑒𝑓𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. When we create the hologram, 

the first wave vector refers to the object beam before 

it hits the object, while the second the wave vector of 

the same when it leaves the object. However, when we 

read the hologram, the first wave vector is that of the 

reference beam and the second is that of the wave 

reflected from the hologram. We assume that they are 

equal in magnitude, |𝑘𝑖
⃗⃗⃗⃗  ⃗|= |𝑘𝑟𝑒𝑓𝑙|⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗=k, i.e. one has elastic 

scattering. These two vectors determine a plane of 

incidence. We then construct the unit vectors  𝑣𝑖̂ and 

𝑣𝑟̂, requiring that both be in the plane of incidence and 

𝑘𝑖
⃗⃗  ⃗. 𝑣𝑖̂ = 𝑘𝑟𝑒𝑓𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. 𝑣𝑟̂ = 0, therefore they are found to be  

 

𝑣𝑖̂ =
−𝑘𝑖⃗⃗⃗⃗ cos𝜃+𝑘𝑟𝑒𝑓𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑘√1−cos2 𝜃
      (3) 

and 

 

𝑣𝑟̂ =
𝑘𝑖⃗⃗⃗⃗ −cos 𝜃𝑘𝑟𝑒𝑓𝑙⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑘√1−cos2 𝜃
                                             (4) 

 

where cos𝜃 =
𝑘𝑖
⃗⃗  ⃗. 𝑘𝑟𝑒𝑓𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑘2
⁄  is the cosine of the angle 

between the two wave vectors. 

 In the electromagnetic case (whether the 

wave is transverse as in the case of free waves, or 

longitudinal or mixed, as they can appear in plasmas) 

as well as in the case of massive vector bosons, that 

are called Maxwell-Proca waves, the reflection from 

perfect conductors has the same boundary conditions. 

We model our reflection tensor in Eq. (1) to satisfy 

these boundary conditions, which are compatible with 

the very reasonable and commonly used assumption 

that there will be a phase shift of 𝜋 due to reflection. 

This mean that the polarization component that is 

perpendicular to the plane of incidence will change 

sign (which is signified by the 'minus' sign in Eq. (1), 

but we later include this sign in the phase). The 

polarization component that is parallel to 𝑘𝑖
⃗⃗  ⃗ will be 

parallel to 𝑘𝑟𝑒𝑓𝑙
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ and will also change sign, just like the 

component parallel to 𝑣𝑖̂ will be parallel to 𝑣𝑟̂ . These 

considerations will give the following form to the 

tensor  

 

𝑇𝑚𝑙 = 𝛿𝑚𝑙 − 𝑘̂𝑖
𝑚 . 𝑘̂𝑖

𝑙 + 𝑘̂𝑟𝑒𝑓𝑙
𝑚 . 𝑘̂𝑖

𝑙−𝑣𝑖
𝑚 . 𝑣𝑖

𝑙+𝑣𝑟
𝑚 . 𝑣𝑖

𝑙 ,  

             (5) 

 

The 𝑘𝑖̂  and  𝑘𝑟𝑒𝑓𝑙̂ symbols mean the unit vectors 

belonging to 𝑘𝑖
⃗⃗  ⃗ and 𝑘𝑟𝑒𝑓𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ . 

 

 One can verify that a reflection of this kind 

preserves helicity. While modeling spin we consider 

processes that preserve helicity in order to be 

consistent with our former results and we also assume 

that the reflection tensor does not modify the norm, 

since we want to incorporate this effect into R, and we 

also assume that there is a phase shift of 𝜋. 

 

 Therefore Eq. (1) is maintained, while the 

transformation tensor is different 

 

𝑇𝑚𝑙 = 𝑎0𝐼 + 𝑖𝑏⃗ . 𝜎 𝑝
.
,     (6) 

 

with 

 

𝑎0 =
1

2
√1 + cos𝜃

.
,     (7) 

𝑏𝑗 =
1

2
√1 + 2𝑘̂𝑟𝑒𝑓𝑙

𝑗
. 𝑘̂𝑖

𝑗
− cos𝜃

.

, 

 

 

 and the 𝜎𝑝 symbols stand for the usual Pauli 

matrices. 

 

 The only link missing from our discussion is 

the investigation of the manner these waves interact 

with photographic materials. It is known that for 
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optical holograms the maxima correspond to the 

central points of the electric fields and not those of the 

magnetic fields and that the electric fields 𝐸⃗  are 

parallel to the vector potential 𝐴 : 𝐸⃗ = 𝑖𝜔𝐴  [10]. 

Therefore we model all our pure transverse waves in 

the same way as the free electromagnetic waves and 

the purely longitudinal ones as electrostatic waves. For 

these waves, if the intensity I is defined as 𝐼 = 𝐸⃗ 2 one 

can see that 𝐼 ≈ 𝐴 2.  

 However, maintaining the same definition of 

I for the Maxwell-Proca case, one does not have the 

same proportionality between intensity and the square 

of the vector potential as in the electromagnetic case. 

It is known [11] that for massive vector bosons the 

gauge symmetry is broken and the Lorentz condition 

is mandatory, therefore besides the transverse fields 𝐴𝑡
⃗⃗⃗⃗  

there will be longitudinal components 𝐴 𝑙 even in the 

case of free waves. The frequency 𝜔 will not only 

depend on the wave vector, but also on the mass of the 

particle   𝑀: 𝜔 = √𝑀2 + 𝑘2, in the so-called natural 

system (ℏ = 𝑐 = 1). For these kind of waves it is also 

crucial to find a connection between the 𝐸⃗  and 𝐴  fields, 

since the former is involved in the computation of the 

intensity, while the latter is given by the Green's 

function formalisms directly, as we see in subsection 

IIC. 

 Maintaining the same definition for the 

electric fields as in Electrodynamics and making use 

of the Lorentz condition, we find that the electric field 

is  𝐸⃗⃗  ⃗ = 𝑖𝑘 𝐴 𝑡 + 
𝑖𝑀2

𝜔
𝐴 𝑙 , therefore the proportionality 

relation becomes  

 

𝐼 ≈ | 𝐴 𝑡 + 
𝑖𝑀2

𝜔𝑘
𝐴 𝑙|

2

 .    (8) 

 

 In the scalar case we assume that the intensity 

is proportional to the absolute value squared of the 

wave field and in the spinor and tensor case this will 

be proportional to the sum of the absolute values 

squared of each component of the wave field. 

 

B. Making the Hologram 

The hologram is produced, as seen in Fig. (1), 

by splitting a single beam into two pieces: the 

illumination beam and then object beam with its wave 

vector 𝑘𝑜
⃗⃗⃗⃗  (refers to 𝑘𝑟𝑒𝑓𝑙

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ in the above) and the 

reference beam directly shed on the photographic 

plaque with a wave vector 𝑘𝑟
⃗⃗⃗⃗  (refers to 𝑘𝑖

⃗⃗  ⃗ in the above. 

As we have said before, we assume a d-dimensional 

space with the holographic screen lying on the 'd-1' 

plane by construction.  

 

 We assume that the phase of the reference 

beam is 𝜙𝑟0 while the phase of object beam is 𝜙𝑜0 in 

the origin, which is also the geometrical center of the 

holographic screen. The wavelength of the radiation is 

𝜆 = 2𝜋 |𝑘𝑖
⃗⃗  ⃗|⁄ . Therefore the phase of the reference 

beam at an arbitrary point A of the screen (whose 

position vector is  𝑟𝐴⃗⃗⃗⃗ ) is 𝜙𝑟(𝐴) = 𝜙𝑟0 + 𝑘𝑟
⃗⃗⃗⃗ . 𝑟𝐴⃗⃗  ⃗ . 

Likewise if the position vector of the object is  𝑟𝑜⃗⃗⃗⃗  , the 

phase of the object beam when it hits the object is 

𝜙𝑜 = 𝜙𝑜0 + 𝑘𝑜
⃗⃗⃗⃗ . 𝑟𝑜⃗⃗⃗   . When the object beam is reflected, 

it acquires an additional phase  𝜋 , and when it hits the 

screen at A, its phase will be 𝜙𝑜(𝐴) = 𝜙𝑜0 + 𝑘𝑜
⃗⃗⃗⃗ . 𝑟𝑜⃗⃗⃗  +

𝜋 + 𝑘|𝑟𝐴⃗⃗  ⃗ − 𝑟𝑜⃗⃗⃗  |. In the case of reflection, we added a 

phase 𝜋, which is  not always realistic, but in most 

cases is a good approximation and is widely used in 

eikonal optics [3]. 

 

 The wave field that is reflected from the 

object and then hits the screen has a value of 𝐸𝑜(𝐴), 

which is  

                     𝐸𝑜(A)=𝐸𝑜0 √𝜎𝑅 
𝑒𝑥𝑝 (𝑖𝜙𝑜(𝐴))

√4𝜋 |𝑟 𝐴−𝑟 𝑜|
            (9) 

We labeled the amplitude of the object wave by 𝐸𝑜0, 

the cross section of the object by σ, its reflectivity by 

R, and we assumed isotropic reflections, which is also 

a reasonable approximation. Likewise the reference 

beam (whose amplitude is 𝐸𝑟0) will have its 

contribution to the field on the screen 

 

𝐸𝑟(𝐴) = 𝐸𝑟0 exp (i𝜙𝑟(𝐴)).            (10) 

The fields 𝐸𝑜(A) and 𝐸𝑟(A) can be added together and 

squared, and then we have the interference picture that 

is the 'hologram'. How would one generalize for an 

arbitrary number of dimensions? 

Only Eq. (9) will be modified, while the phases will be 

given by the same formulae as before, and Eq. (10) is 

also maintained, with the exception that the dot 

product will contain a different number of terms. 

 

 As we have found previously [8], in the case 

where we assume isotropic reflections and the number 

of dimensions 'd' is greater than two, the reflected 

wave field from the object will read 

          𝐸𝑜 (A) =𝐸𝑜0 

√𝜎𝑑𝑅 𝛤(
𝑑

2
)

2𝜋
𝑑
2

  
𝑒𝑥𝑝 (𝑖𝜙𝑜(𝐴))

|𝑟 𝐴 –𝑟 𝑜|
𝑑−1
2

    ,                (11) 

 where Γ is the Euler function and we also 

have to use the generalized cross section 𝜎𝑑  instead 

of 𝜎. In this case, as we have said previously, the 

dimensionality of the holographic picture‘d-1’ 

 The only infra-dimensional case which 

makes sense is 'd=2', where the hologram is one-

dimensional and Eq. (9) will be modified as 
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        𝐸𝑜 (A) =𝐸𝑜0 
√𝜎𝑑𝑅 

√2𝜋
  
𝑒𝑥𝑝 (𝑖𝜙𝑜(𝐴))

|𝑟 𝐴 –𝑟 𝑜|.
                     (12) 

This discussion covers the effects of the 

dimensionality while creating the hologram. As we 

have seen, the velocity does not show up in these 

formulae, the only thing that is referring to the wave is 

the wave vector; therefore there is no dependence on 

the mass except for the case of the Maxwell-Proca 

waves due to Eq. (8). This will be true also in the case 

of hologram reading. 

 

 We can generalize the former discussion for 

the case of waves with different nature, which implies 

a different number of components. For vector and 

spinor fields, there will be $i$ components 𝐸𝑖(𝐴) =
𝐸𝑜

𝑖 (𝐴) + 𝐸𝑟
𝑖(𝐴)., where 

        𝐸𝑜
𝑖 (𝐴)=𝐸𝑜0

𝑖′ 1

√4𝜋
  
𝑒𝑥𝑝 (𝑖𝜙𝑜(𝐴))

|𝑟 𝐴 –𝑟 𝑜|.
                            (13) 

and 

        𝐸𝑟
𝑖(𝐴)=𝐸𝑟0

𝑖 exp (𝑖𝜙𝑟(𝐴)) ,        (14) 

 where 𝐸𝑜0
𝑖′  are the amplitudes of the different 

components for the object beam when it leaves the 

object, while 𝐸𝑟0
𝑖  are the different components for the 

reference beam. The intensity on the screen at point A 

will be 𝐼(𝐴) = ∑ |𝐸𝑖(𝐴)|𝑖

2
. The components 𝐸𝑜0

𝑖′  will 

be evaluated as follows 

 

𝐸𝑜0
𝑖′ = −√𝜎𝑑𝑅 ∑ 𝑇𝑖𝑗 𝑗 𝐸𝑜0

𝑗 .
.        (15) 

 

C. Hologram Reading 

The hologram is read once one sheds a wave 

on it. It may be noted that the direction and the 

frequency of this beam should be the same as those of 

the reference beam that was used to create it.  

 In order to determine the image generated by 

a hologram when we shed some wave onto it, one must 

know the reflected fields at any given point. The 

intensity of these fields is related to the squares of the 

reflected wave fields as we have described in 

subsection IIA, and knowing that, we can have an 

analytical description of the generated image. If some 

wave is reflected from a surface (such as a hologram), 

we can compute the reflected fields on the surface and 

we can examine how those fields propagate. First we 

consider how static fields are determined from known 

boundary conditions and after that we extend the 

calculation for wave fields. For simplicity, we start 

with the (massive) scalar case. 

 

The Green’s function G (𝑟 ) of a static field is defined as 

                             (∇2- 𝑀2) G (𝑟 ) = -𝛿 (𝑟 )                                   (16) 

The field ∅(𝑟 ′) at any given point (𝑟 ′) can be calculated as 

                         ∅(𝑟 ′) =∫
𝑉
 𝑑3𝑟 ∅(𝑟 )𝛿(𝑟 , 𝑟 ′) = -∫

𝑉
𝑑3𝑟∅(𝑟 )(∇2 − M2) G(𝑟 ,𝑟′⃗⃗  ⃗),        (17) 

Where the derivative ∇ is related to the variable  𝑟 . 
After applying the following identities 

                           ∅(𝑟 )𝛻2G(𝑟 ,𝑟 ′) = ∇⃗⃗  [∅(𝑟 ) ∇⃗⃗  𝐺(𝑟 , 𝑟 ′)] − (∇⃗⃗  G(𝑟 ,𝑟′⃗⃗  ⃗)) (∇⃗⃗ ∅(𝑟 ′)), 

                      (∇⃗⃗  G(𝑟 ,𝑟 ′)) (∇⃗⃗ ∅(𝑟 )) = ∇⃗⃗ (G(𝑟 ,𝑟 ′) ∇(∅(𝑟 )) - G(𝑟 ,𝑟 ′) ∇2∅(𝑟 ),      (18) 

 and making use of the Laplace equation    

                (∇2 − M2)∅(𝑟 )) = -𝜌(𝑟 ),                                                 (19) 

 the field in any point can be calculated as   

    ∅(𝑟 ′) = ∫
𝑉
 𝑑3𝑟  G(𝑟 ,𝑟 ′)𝜌(𝑟 ) + ∫

𝑆
 𝑑2𝑟  G(𝑟 ,𝑟 ′) ∇n∅(𝑟 ) - ∫

𝑆
 𝑑2𝑟  ∅(𝑟 )∇n G(𝑟 ,𝑟 ′)),   (20) 

  

where ∇n is the component of the derivative that is 

perpendicular to the surface. 

The first term refers to the sources and we assume that 

there are no sources in the part of space we examine. 

The other two terms are the so-called surface terms. In 

Optics, these are called Kirchhoff integrals. Whenever 

the first surface term vanishes (and the Green's 

function must be chosen accordingly, so that it 

vanishes on the surface) we must know the value of 

the field on the surface, and we are said to use the 

Dirichlet conditions. 

 If we know only the derivatives of the fields 

on the surface, we must require that the normal 

derivative of the Green's function vanishes on the 

surface, and we are said to make use of a Neumann  

 

Green's function. Note that any of these conditions can 

be met at any time (although not both at the same time) 

because Eq. (16) does not completely fix the Green's 

function, so we might add any term whose Laplacian 

is zero (in the region of space we are interested in) in 

such a way that the new Green's function satisfies 

either one of the two conditions. Because we can 

calculate the fields at the surface, we use a Dirichlet 

Green's function, so our field at any given point is 

expressed as follows  

                  ∅(𝑟 ′) = - ∫
𝑆
 𝑑2𝑟 ∅(𝑟 )∇nG(𝑟 ,𝑟 ′))          (21) 

From the image solution for the auxiliary electrostatic 

problem, the Green's function for Dirichlet conditions 

can be calculated. We need to know the Dirichlet 
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Green's function on a plane. First we define some new 

variables 𝑟 1and 𝑟 2 as 𝑟 1,2 = (𝑥 − 𝑥′)𝑒 1⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + (𝑦 −
𝑦′)𝑒 2 + (𝑧 ∓ 𝑧′)𝑒 3 in terms of orthogonal basis 𝑒 1,  𝑒⃗⃗ 2,

𝑒 3;  𝑟1,2=√(r 1,2. r 1,2). 

 In these terms, the Dirichlet Green’s function 

is given in [9] as  

  Ĝ(𝑟 ,𝑟 ′) =
1

4𝜋
(
1

𝑟1
− 

1

𝑟2
).                                  (22) 

 If instead of static field we have wave fields, 

this Green’s function is replaced with  

G(𝑟 ,𝑟′;t) = 
1

4𝜋
 (

𝛿(𝑡−
𝑟1

𝑣𝑓⁄ )

𝑟1
  - 

𝛿(𝑡−
𝑟2

𝑣𝑓⁄ )

𝑟2
),             (23) 

 where 𝑣𝑓 = 𝜔 𝑘⁄  is the phase velocity of our 

wave. Since we consider only one frequency (𝜔), we 

only need the Fourier transform of this Green’s 

function, which is 

 G(𝑟 ,𝑟 ′; 𝜔) = 
1 

4𝜋
(
exp(𝑖𝑘𝑟1)

𝑟1
−

𝑒𝑥𝑝 (𝑖𝑘𝑟2)

𝑟2
)     (24) 

 Note that the dependence on 𝜔 and hence on 

the mass has disappeared. If we change the sign 

between the two terms of the RHS of the former 

equation, we get the Neumann’s Green’s function. If 

we drop the second term, we need to know both the 

field and its derivative on the integration surface, 

which is another way we could precede. We choose to 

use the Dirichlet’s Green’s function. Now we 

substitute equation (24) into equation (21), since 

equation (21) has been derived based on the 

assumption that the fields are static. Let’s check this in 

the following way: we know if there is a wave field, 

the equation (19) is replaced with 

(∇2 - 
𝜕2

𝜕𝑡2
 - 𝑀2 )∅(𝑟 )      =  -𝜌(𝑟 , 𝑡).                  (25) 

 On the other hand, if we consider one 

frequency and retarded waves only, our field and 

source can be expressed as  

∅(𝑟 ,t) = ∅(𝑟 , t = 0) exp[-𝑖𝜔(𝑡 − 𝑙
𝑣𝑓

⁄ )], 

𝜌(𝑟 ,t) = 𝜌(𝑟 , t = 0) exp[-𝑖𝜔(𝑡 − 𝑙
𝑣𝑓

⁄ )],            (26) 

 where l is the distance between the source and 

observer. Now substituting this into equation (25) and 

dividing the resulting equation by 𝑒𝑥𝑝(−𝑖𝜔(𝑡 −
𝑙

𝑣𝑓
⁄ )) we obtain equation (16). So if we work with the 

time Fourier transforms of the wave fields and Green’s 

functios and assume only one frequency, we are able 

to make use of the static formulation of the problem 

using the Fourier transform  of the Green’s function 

we have just given in equation (24). 

 The normal derivative of this Green’s 

function on the surface defined by the hologram is 

  ∇nG(𝑟 ,𝑟 ′)  = - 
𝜕

𝜕𝑧
 G(𝑟 ,𝑟 ′)|𝑧=0.              (27) 

 If the dimensionality‘d’ were different (but d 

> 3), our Green’s function  would be modified as 

G(𝑟 ,𝑟 ′)  =  
𝛤(

𝑑

2
)

2𝜋
𝑑
2

 [ 
exp(𝑖𝑘𝑟1)

𝑟1

(𝑑−1)
2

  - 
exp(𝑖𝑘𝑟2)

𝑟2

(𝑑−1)
2

]  ,              (28) 

 while for d =2, (the only meaningful case of 

an infra space in holography ) is  

G(𝑟 ,𝑟 ′) = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × [
exp(𝑖𝑘𝑟1) log (

𝑟1

𝑅0
) −

exp(𝑖𝑘𝑟2) log (
𝑟2

𝑅0
)

],           

         (29) 

 where 𝑅0 is arbitrarily fixed in order to make 

Green’s function vanish when 𝑟1 = 𝑟2 = 𝑅0. The 

constant in the former equation is not even important. 

 Now the only thing left to be determined is 

the reflected field at any given point of the hologram. 

For scalar waves, the phase and amplitude of the 

reflected wave depends on the phase and amplitude of 

the reading wave 

                   𝐸′
𝑟(𝐴) = -|𝑅ℎ | 𝐸𝑟(A) ,                      (30) 

 where 𝐸′
𝑟(A) is the reflected wave, 𝑅ℎ is the 

reflectivity of the hologram (it is the hologram data file 

generated in the previous step) and 𝐸𝑟(A) is the 

reading wave (exactly same as the reference beam in 

equation (10)). 

 As in the previous section, the field of the 

wave that hits the screen is       

𝐸𝑟(𝐴) = 𝐸𝑟0 exp [𝑖(𝜙𝑟0 + +𝑘𝑟
⃗⃗⃗⃗ . 𝑟𝐴⃗⃗  ⃗)].      (31) 

 which we introduce into the Eq. (30). In the 

case of wave fields with several components, one must 

use the appropriate relations for the reflection as given 

in subsection IIA. 

 We incorporate Eqs. (21), (29), (30) and (31) 

into a numerical code to compute the reflected fields 

(and therefore the intensities in the manner presented 

in subsection IIA) at any given point of the space. 

Therefore, after reading we obtained the image from 

the hologram. 

 

Computer generated holography 
We generate a computer code which consider 

a stationary point-like object of negligible but finite 

physical size for study in 2d-space. In the simulation 

we use scalar waves of for creating and reading the 

hologram. We create a holographic 1d screen of finite 

size (D) and a sufficient number of grid points. To see 

the image we create a 2d observational zone with finite 

and sufficient number of grid points. 

 Like any optical procedure [3], we do expect 

a blurry picture instead of a single point as the 

consequence of the process of generating and creating 

the hologram. In this section we are empirically 

studying the dynamics of this blurriness and try to 

investigate the aberrations created by this procedure. 

In the forthcoming work [12] we plan to compare the 
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effect due to different waves in varying 

dimensionality. 

 In the whole computation we assume that the 

point-like object is separated from the center of the 

line screen (whose picture is the actual hologram) by 

a distance 'DD', and that the line of separation is 

perpendicular to the screen. We noted that there is no 

effect of wavelength on the image because it appears 

in ratios with image width, distance from the screen, 

and off-centricity. So for convenience we fixed the 

wavelength λ=1 unit and thus wave vector 𝑘 = 2𝜋. 

The geometrical size of the point is taken as 𝑆1 = 5 ×
10−5 units. The Green's functions and other 

parameters are taken as per the nature of the wave and 

dimensionality. 

 For the numerical integration that is involved 

in creating and reading the hologram, we divided the 

screen into several thousands (𝑁𝑝
2) of equal regions 

(pixels); say10000 × 10000. The number of 

necessary grid-points was estimated as follows: 𝑁𝑝 = 

Screen Size*Number of Fringes per unit Wavelength. 

We estimated the size of the fringe, knowing this, we 

computed the number of fringes per screen size, and 

placed 10 points per fringe, then, in order to check 

stability we doubled the number of grid-points and so 

on. 

 We played with the parameters; screen 

dimensions (D), distance of image centre from the 

screen (DD), and number of grid-points (𝑁𝑝), 

directions of reference and object beams and off-

central configurations etc... to see the effect on best 

possible image of the object. In all the cases shown in 

the Figs (2-5) the images show comma-like aberration. 

However, a detailed description of the figures is given 

separately. We also check the effect due to the change 

in wavelength λ. We tabled down the width of image 

Δ with respect to these parameters. 

 The direction cosines of the object and 

reference beams are taken slightly different; 

(co(1)=0.2) and (cr(1)=0.22), respectively. The 

numerically created hologram of the object thus is read 

back in the two-dimensional space. We noted the 

image has a sharp peak, centered at -8 units, along x-

axis, however it is quite blurred along -ve side of the 

y-axis, as shown in Fig (2). No effect in the image 

width and noise with variation in the distance of object 

from the screen has been found as shown in the Table 

I. 
TABLE I: Empirical study of the parameters in units: Δ  

v/s DD. Here D=60.0 units. 

DD 5.0 50.0 500.0 5000.0 

Δ 6.0 6.0 6.0 6.0 

 

 

 
FIG. 2: Intensity distribution of image along x and y- axes for DD=500 units, D=10 units. 
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In Table II we fixed the centre of image formation DD 

at 500 units and study the variation of the screen width 

D. We found that Δ =6.0 units. We also noted that in 

most of the other cases there appear double peaks 

intermingled with each other.  
TABLE II: Empirical study of the parameters in units: Δ  

v/s D, with DD=500 units. 

D 5.0 10.

0 

12.

0 

15.

0 

20.

0 

30.

0 

40.

0 

Δ 13.

0 

6.0 12.

0 

13.

5 

19.

0 

26.

0 

37.

0 

 

We present a case where the screen width is fixed at 

D=10 units and we study the dependence of image 

width with the variation of the distance from the screen 

as depicted in Table III. 

TABLE III: Empirical study of the parameters in units: Δ 

v/s DD, with D=10 units. 

D

D 

5.

0 

10.

0 

20.

0 

30.

0 

40.

0 

50.

0 

60.

0 

70.

0 

Δ 5.

0 

6.0 8.0 10.

5 

12.

0 

15.

0 

17.

0 

18.

5 

 

 In Fig. (3), we plot image intensity versus x-

width of the image in four panels for DD=5.0, 10.0, 

30.0, 70.0 units, respectively. One can see from the 

Figure that the blurriness is minimum for DD=10 

units, in other words the image is focused at a distance 

of 10 units. 

 

 
FIG. 3: Intensity distribution of image along x and y- axes for DD=10 units, D=5 units. 

 

 No change in the x and y coordinates has also 

been noted as we change the direction of object beam, 

keeping the direction of reference beam fixed. 

However, if we change the direction of reading wave 

(cr(1)=0.1; 0.2; 0.3), keeping the direction cosines of 

the reference beam fixed (cr(1)=0.2), the peak shifts 

along x-axis. As shown in the Fig. (4) a shift in peak 

of about 49% along +ve x-axis and about 54% along -

ve x-axis have been observed for first and third cases, 

respectively. No significant change has been noticed 

in y-axis.  
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FIG. 4: Intensity distribution of image for DD=10 units, D=10 units

. 

 

 In our simulation, there is no significant 

variation in the off-axis deviation i.e. non-symmetric 

position of the object. At last we also investigated the 

effect of the wavelength on the image formation. As 

shown in the Fig. (5), on the variation of 10% in 

wavelength there is 7-16% up-down shift in the peak. 
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FIG.5: Intensity distribution of image for DD=10 units, λ=0.9; 1.1 units. 

 

 We have also investigated the sensitivity of 

our holographic mapping on the process of changing 

the wavelength of the reading wave from that of the 

reference beam, and their direction cosines with a few 

percent knowing that during experiments this may not 

destroy the picture. Surprisingly, we did not find this 

effect in our computations. 

 

Discussion & conclusions 
The revolution in the Holographic Principle 

is now a major focus of attention in a number of areas 

of science e.g. gravitational research, quantum field 

theory and elementary particle physics. A popular 

account of holography can be found in [13-16]. 

 We discussed a mathematical formalism of 

creating and reading a hologram, in the most general 

terms. We developed holographic theory for various 

kinds of waves: electromagnetic, acoustic,  

 

gravitational etc. These waves can propagate in 

several media, solids, liquids, plasma, etc. They 

exhibit a large variety of mathematical structures, such 

as scalar, spinor, vector and tensor. The fields that are 

neither scalar nor fermions, can be Abelian or non 

Abelian gauge fields if they are massless, but we also 

considered the same fields when non-zero mass is 

added and so the gauge invariance is in part broken.  

 Using the fact that waves are fields, we 

borrowed many tools from classical field theory, such 

as Green's function formalism, which is very useful for 

describing the creation of holograms, but it is more 

important for the understanding of the reading process. 

This formalism can be used for waves of arbitrary spin 

and waves propagating in a medium. As the formalism 

applies in any dimensions, we presented some 

conclusions for hyperspace and for the two-

dimensional space, which is the only case of infra-

dimensions that makes sense. 

 In this work we presented the simplest case 

of scalar wave and a point-like object in a two-

dimensional space. The infra-space hologram is one 

dimensional and is read in a two dimensional space. 

We obtained the image of a point-like object, like any 
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optical procedure a blurry picture instead of a sharp 

point. We investigated the aberrations that are due to a 

reading beam hitting the screen in a slightly different 

direction that of the reference wave and a slightly 

different wavelengths, etc. We measured the width of 

image so formed and its dependence on the size of the 

holographic picture, the distance between the screen 

and the object, the distance of the object from the 

symmetry axis of the screen, the nature of the mapping 

and reading wave. We found that in all the cases a 

comma-like aberration is persisting. This may have a 

hint of some underlying physics at work. 

 As matter of this result it become imperative 

to cite our previous work [8], where we have 

conjectured that the uncertainty in the quantum 

mechanics is due to the holographic basis of physical 

reality. In that work we have argued that for the macro 

particles (classical objects) this fuzziness, noise and 

wave pattern due to holographic projection are weak 

and so hard to observe in daily life. These conjectures 

rattle the antenna of scientific community to ponder 

upon the possibility of the holographic basis of the 

physical reality.  

 In the future work we plan to investigate 

scalar field in ‘3d’ and ‘4d’ space for scalar and 

electromagnetic fields with an analogy of the massive 

case and propagations in a medium, especially in 

dielectrics and plasmas [12]. We also plan to describe 

some possible integrations of the path-integral [17] 

formalism into our description. 
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